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Steady two-dimensional viscous flow in a jet 
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Department of Mathematics, University of Queensland 
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An idealized two-dimensional flow due to a point source of x momentum is 
discussed. In  the far field the flow is modelled by a jet region of large vorticity 
outside which the flow is potential. After use of the transformation 

6 3  = (6  + i q ) 3  = x + iy, 
the equations suggest naively obvious asymptotic expansions for the stream 
function in these two regions, namely 

5 tl-nfn(7) and t?-nPn(q/t) 
n=O n=O 

respectively. Consistency in matching these expansions is achieved by including 
logarithmic terms associated with the occurrence of eigensolutions. Fn is easy to 
find and!, can be found in closed form so the inner and outer eigensolutions may 
be fully determined along with the complete structure of the expansions. 

1. Introduction 
The problem is that of steady two-dimensional flow due to a point source of 

x* momentum at the origin 0. (In $61 and 2 asterisks distinguish physical 
quantities from their non-dimensional counterparts.) The fluid is viscous, in- 
compressible and of infinite extent. The flow is produced solely by the momentum 
source; there are no other singularities such as mass sources and there are no 
boundaries. 

In the corresponding three-dimensional Landau source problem (Rosenhead 
1963, p. 150) an exact self-similar solution has been found to describe the whole 
flow field. The two-dimensional case does not lend itself to an exact analytical 
description as does the three-dimensional case, and the method of matched 
asymptotic expansions is used to discuss the far flow field in the 6 plane, where 

m 

C3 = (6 + i ~ ) ~  = z + iy. An inner stream function expansion tl-nfn(q) fails to 
n=O 

m 

n = O  
match an outer expansion 61-m-Fn(y/fJ beyond the third term. At the very 

root of such difficulties is the use of similarity solutions to give asymptotic 
descriptions of the inner and outer flows. The details of the near flow field do 
not influence such solutions except through an insistence on flow symmetry and 
the use of a flux integral condition which expresses conservation of momentum. 
Mathematically, the partial differential equations for the inner or jet region are 

4 F L M  55 
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replaced by ordinary differential equations with boundary conditions specified 
a t  7 = 0 and 7 = co. The price of this simplification is the loss of an upstream 
boundary condition a t  .$ = > 0 which would otherwise have been applied to  
the essentially parabolic boundary-layer equations. Likewise, in the outer flow 
problem, boundary conditions that would otherwise accompany the potential 
equation are ignored. Thus one eigenfunction problem arises for the inner region 
and mother for the outer. The final expansiom contain arbitrary multiples of 
eigensolutions and can be used to  describe far flow fields of more general force 
distributions than the point force actually considered. However, such distribu- 
tions must have symmetry about Ox and exhibit behaviour a t  infinity no worse 
than that of the point force. 

The problem is related to a certain two-dimensional jet problem considered 
first by Schlichting (1960, p. 164). He considered the case of laminar flow in a jet 
emerging from a slit in an infinite wall and, using boundary-layer theory, obtained 
anumerical solution for the jet region downstream of the slit. Bickley (1937) found 
the stream function similarity solut,ion in a simple form 1.6510(Mvx*)f tanh v,,, 
where the similarity variable yo is 0.2752(M/v2)#y*/x*g. Here p M  is the source 
strength of x* momentum while v is the kinematic viscosity. It is not surprising 
that the boundary-layer solution in our problem is in effect the same as Bickley’s, 
for his result depends on neither the wall geometry nor the rate of mass injection 
a t  the slit. Rubin & Falco ( 1  968) found the dominant potential flow for t,he wall 
geometry considered by Bickley. They also found the first correction term for 
the jet region and made a brief study of the inner eigenvalue problem. This 
eigenvalue problem is independent of both the wall geometry and the rate of 
mass injection and thus is precisely the one to  be considered here. The eigen- 
function problem may be solved exactly; the results are given in $ 1 1 .  

I n  this paper a kinematic approach is adopted because for this problem i t  is 
simpler than the conventional dynamical one. I n  the exact problem, instead of 
considering a vector velocity field and a pressure field as in the dynamical 
approach, we simply require two scalar fields, the stream function and the 
vorticity (or circulation density). Locally, the transport of momentum depends 
not only on diffusion and convection but also on the pressure distribution, 
whereas transport of circulation is by diffusion and convection alone; detailed 
local comparison of the two terms in the circulation flux vector gives useful infor- 
mation about the physical structure of the flow field (Pillow 1970). Moreover, 
the dynamical approach affords no compensating advantage. 

The kinematic approach leads us naturally to seek a kinematic description 
of the singularity at 0. This description is quite simple and, see $ 2 ,  provides the 
dominant vorticity field near the singularity by inspection. No such simplification 
occurs in the dynamical approach. Again i t  is the physical processes governing 
circulation transport that  are important in establishing the nature of the far 
flow field. 

I n  dynamical terms the flow is caused by a (two-dimensional) point force a t  
0 producing F p M  units of x* momentum per unit time. Here p is the density 
and the factor 7 is introduced to simplify subsequent expressions. Under steady 
conditions, this point force is equivalent to a dipole producing J$M units of 
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circulation moment about Ox* per unit time, where the circulation moment within 

a region S is defined as w y d S  (see appendix). Thus the dipole has strength 

V M  and its axis is in the positive-y* direction. Conservation of x* momentum 
implies conservation of moment of circulation about Ox* and vice versa. 

ss, 

2. Statement of the problem 
Dimensionless variables w, @, r and 8 are defined by 

w* = M2v-3~ , @* = v$, r* = V Z M - ~ ,  e* = 8, 
while x, y ,  s are defined in the obvious way. A non-dimensional statement of 
the problem in polar co-ordinates is 

v=$k+w = 0, 
r 

@ = w = o  on 8 = 0 , k n ,  (2.4) 
where r =- 0, -7r < 8 < 7~ and V2 is the Laplace operator. The conservation 
result (2.3) is derived in the appendix. Cis any simple closed contour enclosing 0, 
with outward unit normal n and arc length s; V is a suitable flux vector for the 
moment of circulation about Ox. When C is a circle with centre 0 and radius r ,  
(2.3) is replaced by 

J -n 
where V, is the radial component of V. 

Since a simple solution of (2.1)-(2.5) appears unlikely and since there are no 
natural parameters in the equation, we consider asymptotic solutions for small 
and large values of r ,  which acts as a ‘loca.1 Reynolds number ’. Thus Mr*/v2 > 1 
in the latter case, which is the one of main interest here. Now for r sufficiently 
small, diffusion effects dominate convection effects so that w is approximately 
harmonic and $ approximately biharmonic. As leading terms in a co-ordinate 
perturbation expansion for w and @ we may take (2nr)-I sin 8 and 

- (47r)-I r In r sin 8, 

respectively. The flow for r > 1, - 7~ < 8 < 7~ is conveniently discussed by intro- 
ducing the transformation 

The exact problem (2.1)-(2.4) becomes, for the transformed domain 5 > 0, 

(2.8) 

(2.9) 

reie = z = x+iy  = (<+i7)3 = 5 3  = (&9+)3. (2.6) 

lrll v 2 w  + a(@, o)la(t, 71) = 0, (2.7) 543, 

VZ@ + 9 ( p  + ?f)2W = 0, 

@ = w = O  on q = O ,  -+C,/3. (2.10) 
4-2 
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Here V2 = a2 /a [2+  a2/aq2 and I? is the image of C under the transformation. 
When I? is that part of the straight line 6 = a (a a positive constant) between 
7 = T [ J 3 ,  (2 .9 )  becomes 

J$d7 = $7, (2.11) 

after using the flow symmetry. We need record only one flux vector component : 

3. The boundary-layer solution 
For T & I, we can hardly expect a regular perturbation problem. The convec- 

tion effects cause the circulation to be carried downstream along the streamlines 
while the viscous effects cause it to diffuse like heat as it is being convected. 
Furthermore, no circulation is convected from 'upstream infinity', so that its 
appearance other than in a region downstream of 0 must be due to the diffusion 
process and its density w is thus expected to be exponentially small far from the 
axis. Moreover, a boundary-layer region is observed in experimental two- 
dimensional jets. The flow is modelled by a region of large vorticity outside which 
the flow is potential: we are faced with a singular perturbation problem. 

A solution for r $ 1, -T  < 8 < T corresponds to a solution for R $ 1, 
-in < 4 6 in- or, equivalently, [ 9 1, - 5 4 3  < 7 6 [ J 3  in the < plane. In the 
boundary-layer approximation, a2w/a[2 and a2$/ag2 in (2 .7 )  and (2 .8 )  are in- 
significantwhile the equally dominant termsin V,  are wy[2 a$/aq and +g(-2(a$/ay)2. 
The boundary-layer solution has the form $o = [f0(7), where 

fO(O) =f;l(0) = 0, fJ"'(C0) = 0 (n = 1,2 ,  ...). (3 .3 )  

The conditions at  7 = 0 describe the flow symmetry while those a t  infinity arise 
from the decay of vorticity in the lateral direction and the quiescence of the 
surrounding fluid. Because of the flow symmetry we need consider the situation 
for 7 2 0 only. The solution of (3.1)-(3.3) is 

so that 

fo = 2 tanhv, 

@o = 2C tanh 7, 

which is essentially the result found by Bickley, the inner similarity variable 7 
being approximately proportional to Bickley's T ~ .  The boundary-layer stream- 
lines for ( 9 1 are very nearly the straight lines 7 = constant. 
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4. Inner and outer expansions 
In  the inner or jet region, we are concerned with limits as t + c o  while 7 

remains fixed; 7 = o(6) in this region. In the outer region 7 = O(e)  and here we 
are concerned with limits as 5 -+ co while x = q/< remains fixed. Thus x is 
a similarity variable for the outer region. 

For the inner region consider expansions of the form 

llr(6,q) = @ 0 ( 5 , ~ )  + ~ 1 ( E ,  V )  + + @n(t ,  7) + * * *  

= t~o(r)+'l(5)fi(r)+.. .  +'n(t)fn(r)+ (4.1) 

= t-3go(r) + t-4h(t) g l ( r )  + *.* + t-4hn(0 gn(r)  + 'e.3 (4.2) 

w ( t , r )  = w O ( 6 , ~ )  + ~ 1 ( 6 , ? )  + + un(6, 7)  + 

where hn+,/hn -+ 0 as 6 -+ co. These must match with outer expansions: 

9(5,r) = y o ( 5 ,  7) +Yl(t) 7) + * * a  +'rn(O 7) + * - *  

= U'~(X)  + hi( t )  F~(x) + + 'n(5) Fn(X) + 
m ( t )  7) = QO(t,r) + Ql(t ,  7) + + Q n ( 6 , ~ )  + . * *  * 

(4.3) 

(4.4) 

The reasonable assumption of exponentially small vorticity at 'upstream in- 
finity' coupled with an induction argument shows that Qn = 0 for n = 0,  1, . . . . 
First, from the terms of highest order in (2.7), after substitution of (4.3) and 
(4.4), we have 

Thus sZo is constant on any streamline. The assumption of exponential decay of 
vorticity a t  'upstream infinity' then implies Qo = 0. Suppose now that R, = 0 
for i = 1,2,  ..., n- 1.  Then the equation for an, namely, 

a('Y0, fio)/a(t>r) = 0. 

aP"0, Qn)/a( t ,  7) = 0, 

implies in a similar way that Rn = 0. By induction, all terms of (4.4) are zero 
so that the terms Tn are harmonic. 

Now the integral condition (2.91, retained in full but exhibiting the inner and 
outer contributions, is 

where rr, and xL are values of 7 and x at a point L in the region of overlap. 
(Under an appropriate limit process, rL + co and xL -+ 0.) Careful inspection of 
(2.7), (2.8) and (4.5) after using (2.12), (4.1)) (4.2) and (4.3) shows that, at least 
temporarily, we should write 

@(t, r )  = tfofr) +f1(r) + t%r) + - 
4 5 ,  r )  = 5-390(r) + t-4g1(r) + 5-'gsz(r) + . . 

@(6) 7) = tFob(x) + m x )  + 6-lFz(x) + ... . 

7 (4.6) 

(4.7) 

(4.8) 

for the inner region, and for the outer region 

In addition to the flux condition (4.5), we have the conditions at 7 = 0 in 
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(2.10), which may be applied to the inner expansions (4.6) and (4.7), and the 
conditions at 7 = & g.43, which may be applied to (4.8). It is necessary that the 
inner flow should merge into the correct potential flow with exponential decay 
of vorticity as 7 -+ 03. 

5. Potential flow induced by the basic jet flow 
The fluid on either side of the jet is set in motion by the jet action. Now 

@o -+ 25 as 7 -+ co. This limit gives the order of the potential flow and is indeed 
itself harmonic; however, the harmonic function required (Yo = gF0(x)) must 
vanish on q = g.43. This function is given uniquely by 

y o  = 25(1-~/ .43)  = 2([-7/43). (5.1) 

For the lower half of the potential-flow region 'Yo = - 2(g + 7/43), which vanishes 
on 7 = - 5.43 and matches $o as 7 -+ - co. The potential flow Yo in the z plane is 
completely smooth at  8 = n-. The most convenient descriptions of the flow terms 
in the x plane are obtained using the range 0 < 0 < 277; thus 

Yo = (41.43) &sin +(n- 6) (0 < 0 < 271). (5.2) 

The discontinuity - $r-# in the 0 component of velocity on traversing the jet 
from below may be interpreted as arising from a line distribution of sinks along 
the positive x axis, the sink density being proportional to x-8. To leading order, 
this describes the entrainment effect of the jet on the surrounding fluid. 

6. General term of the inner expansion 

C-3-n and El-" in these respective equations) 
Substitution of (4.6) and (4.7) in (2.7) and (2.8) yields (from the coefficients of 

d +fog; + (n+ 3)fAgn + 3gO.K- (n- 1)  d f n  = H i  (6.1) 

f k +  9g, = K n, (6.2) 

where K ,  = -[(3-n) (2-n)fn-2+ 1872gn-2+974gn-41, (6.3) 

while H, is a function of 7 with terms containing fn-l, gn-l, . . . , f l , g1 and their 
derivatives. These equations are strictly correct only for n 2 4; they are correct 
for n = 2 and 3 provided that we write gn-4 = 0 for these values. The correct 
equations for n = 1 are obtained by writing H, = K ,  = 0. Elimination of the 
gi (i = 0, I, .. ., n) from (6.1) and (6.2) yields for n 2 1 

Hn(fn) = sw (6.4) 
where the operator M, is given by 

d4 d3 d2 d 
M, = ,+fo-+(n+3)f~-+3.f~--(n- l ) f { ,  

d7 d713 d7 
and the forcing term s, may be expressed in terms of the f i  (i = 0, I,  . . ., n - 1) and 
their derivatives. The boundary conditions are 

f,(O) = f:(O) = 0, gn(7) -+ 0 exponentially as 7 -+ co. (6.6) 
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Then (6.4) implies that f, is an odd function. Integration of (6.4) yields 

Ln(fn) = En, (6.7) 

where 

8, = B,+ ~,(S)dq, B, = constant. (6.9) 1: and 

Since L,(fh) = 0, the substitution f ,  = uf; reduces (6.7) to 

fAU"+2f;;U'+(f/+nfi2) U = S,, 

where U = u'; this equation has been simplified by making use of the integrated 
forms of (3.1). By writing X = f U and changing the independent variable to 

7 = 7(7) = tanhq = ifo, 
d2X d X  
a72 a7 

(6.10) 

where U(Y+ 1) = 2n. Three fundamental solutions of (6.7) and their behaviour 
as q -+ 00 are 

we obtain (1 -7') - - 27 - + V ( V  + 1) X = 2#,/f 6, 

u1 = f A -+ 0 exponentially, (6.11) 

(6.12) 

u, = f;I7 Qv[7(5)1d5 N constant x 7 +constant + O(e-27), (6.13) 
0 f a r )  

where P, and Q, are Legendre functions of the first and second kind. A fourth 
fundamental solution of (6.4) generated by B, is 

where 

(6.14) 

For n = 1 , 2 ,  ..., u4 asymptotes to a quadratic polynomial in q with ex- 
ponentially small error for large 7. The form of (6.7) implies that, since the forcing 
term 8, is even, the particular integral W, to which it gives rise is odd. By (6.6) 
we require two odd fundamental solutions. For n = 1,2,  ..., two such solutions 
are u4 and a2uz + a3u3, where 

which reduces to 

a2u:(0) + a,ui(O) = 0, 

2a2 sin Qun + ma, cos Qun = 0. (6.15) 

As the second odd fundamental solution we select 

(6.16) i u2, when u is an even integer and n = k(2k+ 1)) k = 1 ,2 ,  ..., 
u,, when u is an odd integer and n = k ( 2 k -  l), k = 1,2, ..., 
u2 - (2/7r) tan &m u3, when u is not an integer. 
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As fundamental solutions we shall use suitable linear combinations 

uni (i = 1 , 2 , 3 , 4 )  of uj ( j  = 1 , 2 , 3 , 4 ) .  

Although it is possible to construct a particular integral W,, it  is more convenient 
to discuss each case in turn. 

7. General term of the outer expansion 
The general term of (4.8) may be written as R1-Qfi($), where 

= COS,-~ @,(tan $). 

The general solution of Laplace's equation which vanishes on $ = Qn is an 
arbitrary multiple of ( in-  q5) or Rl-nsin [(n- 1) (Qn- q5)]  according as n = 1 or 
n + 1.  These correspond to solutions Q(n- 0) and &-"sin ['(n - 1)  (n-B)] in 
the x plane. The constant multipliers are found by matching with (4.6) after 
expanding the potential solutions about x = 0. Later, a complex representation 
of these potential terms is given. 

8. Solution for f, and F, 
When n = 1, the particular integral of (6.4) is zero since s1 = 0. Moreover, 

v = 1 and the three fundamental solutions have simple forms: 

ull = j ;  (even), u12 = 1 (even), 

u13 = (1-372)-37 (odd) - - 2 7 + 3  for 7 9 1.  

Again u14 = u4 with v = 1 and this odd solution asymptotes to a quadratic for 
large 7. Now for 7 % 1, <Ofl must match the potential terms of order to for 
y/[ 6 1.  Inspection of (5.1) shows that u14 must be excluded and further that 

?.hl = f1 = u13/43 = [Y( 1 - 37') + 31/43 .  (8.1) 

In  its turn, the asymptotic behaviour of f, shows that in the outer solution we 
require a term which behaves like 6043 for 7/[ 6 1. The required potential term 

(8.2) 
since this vanishes on 7 = 643.  The results may be extended to the lower half 
field as before. In  the z plane, the potential flow of this order is 

t.OFl(X) is Y1 = 4 3  - 3$J3/n = [n- 3 arctan (7/[)],/3/n, 

Y, = J3(n-B)/n (0 < B < 2n), (8.3) 
which signifies a sink flow towards the origin. Such a flow independent of r is 
acceptable on physical grounds since fluid driven downstream by the point 
force has to be replaced. Because Yo has a particularly simple form, it is Y, which 
dictates the dominant behaviour for 7 % 1 of subsequent terms [-If2, 6-"f3, ... 
in the inner expansion. For 7/( < 1, 

y, = 4 3  -3J3&-17+@5-373-.... 
n n 

The matching scheme in table 1 extends beyond the terms discussed in this 
paper. 
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9. Solution for f, and F, 
The third-order equation and boundary conditions for f, are 

L,(f,) = X, = B,- 12fA-2f;2+471f~+271~~2-~717(3-772) 

+ %$ log cosh 7 + 9 7 2  + y, (9.1) 

f,(O) =f;(o) = 0. (9.2) 

The expansion (8.4) and the anticipated form of YEP, show that to match f-y, 
we must have 

fZ(71) - 343 7 + O( 1) = 1.654071 + O( 1) for 7 1. (9.3) 

The particular integral of (9.1) is odd, so that the appropriate fundamental 
solution of (9.1) is 

uZ3 = ZC, - (2/7r) tan &mu3, (9.4) 

where v = $(417- 1). Now (9.3) implies thatf; + 0 as 31 -+ co. Then (9.1) shows 
that X, + 0 as 7 -+ co (the decay being exponential). Thus the matching con- 
dition (9 .3 )  determines the constant B, which generates uZ4 ( =  u4 with v given 
the value just stated): 

B, = -?(7-41n2). (9.5) 

This guarantees that the correct multiple of uZ4 is being added to annul the 
coeEcient of 71, in the asymptotic form of the particular integral of the fourth- 
order equation for f,. Numerical integration then shows that, for large 7, 

f, N - 1.654071 +4*1262 + O(e-,v). 

9, = 5-7, N - 1.6540<-1y + 4.1262<-1 + O(<-l e-,v). 

(9.6) 

(9.7) Thus 

The potential-flow term <-IFz, which is zero on 71 = f J 3  and matches the term 

(9.8) 

4~1262{-~, is 

f - v I J 3  
{ 2 + q 2  . 

Y, = <-‘F,(x) = 4.1262 ~ 

10. Solution for f3. The first inner eigenfunction 

third-order equation and boundary conditions for f are 
The procedure here is almost identical with that of the previous section. The 

L3(f3) = s3 = B3 - 20f; +f; f, - 5f ;y; + 271”f:’ + 47s + 271”fof; 

+ l O { ~ ~ A  f;-2q[7-73+3r(72- l)’]/J3 
+ ~ [ T / ( ~ T - T ~ ) - ~ ~ C O S ~ ~ ] / J ~ ) ,  (10.1) 

(10.2) f3(0) = f;(O) = 0. 

The Taylor expansion of (9.8) and (8.4) and the anticipatedform of Y3 show that, 
for matching [-,f3, we must have 

f3  N -4*126271/43+0(1). (10.3) 
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Because u = 2 when n = 3, we may find fundamental solutions of M3(f3) = s3 
with simple forms: 

u31 = f i, (10.4) 

u32 = f 0 -  2?%fi, (10.5) 

u33 = ?fi-7fo+4, (10.6) 

u~~ = 8q3( 1 - 72) - 1 2 ~ ~ ~  + 307 - YT. (10.7) 

The even solutions ual and u3, are deleted as before. Although setting 
B, = 30/n - 40( 1 +In 2)/ J3 ensures a linear asymptotic behaviour for f,, the 
precise linear condition (10.3) cannot be imposed because ~ 3 2  (whose coefficient 

is still arbitrary) asymptotes to a constant rather than a linear form. This 
inadequacy is overcome by replacing $, = <-'f3 in (4.6) by 

Then (10.8) 

A constant asymptotic form off: can be matched by introducing a term of 
O(t-2Int) in the outer expansion. The required function is 

(10.9) 

An additional forcing term - a&(fo f ;I + f 7) now appears on the right side of 
( l O . l ) ,  leading to a new solution f3 with asymptotic behaviour 

f3 N (1 1.530 + O.sOOa,*,) 7 + C* + 2a,,. ( I  0.10) 

The constant c* depends on a&) which for matching, by satisfying (10.3), must 
have the value - 17.390. One arbitrary constant a32 persists in the final form of 
the inner expansion as a coefficient of u,~, which we eventually identify as the 
first inner eigenfunction. 

11. Extension of the results 
The modified outer expansion is the imaginary part of 

8-2524 w = -- 3J31nc1+- C;l + CT~[B In cl + A ]  + . . . , (11.1) 
J3 L- -7- J 3  

where 
vanishes on 7 = 2,543 and is anti-symmetric. The outer eigensolutions 

= Ce+iin according as - J3 < x < O  or 0 < x < 43. As defined, @ 

r-ksink(7r-0)) k = i , 2 ,  ..., 
represent mass multipoles in the z plane and lead to  further logarithmic terms 
in the outer expansion. A non-periodic eigensolution 7r - 0, allowing for production 
of mass at 0, is ignored. 

The method of Libby & Fox (1963) leads to the inner eigensolutions 
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Now n = +v(v+ 1) withj = 1 implies n = 3, verifying that &he first eigenfunction 
is indeed E, = f,. This allows for the possibility of an origin shift h along Ox: 

h a$o/ax = Qht-"(fo - 27fi) + O ( p ) ,  (11.3) 

which may be compared with a32u32. For each inner eigensolution an extra 
logarithmic term appears in the inner expansion. 

12. Discussion 
In viscous flow problems, it is usually necessary to divide the flow field into 

regions where various physical processes such as convection and diffusion play 
either an important or unimportant part. In this paper, two such regions for 
r 9 1 have been discussed in great detail. For r sufficiently small, vorticity 
gradients are expected to be large, so that the diffusion process gives the model 

0 X 

FIGVRE 1. The potential-flow streamlines, Yo = constant, r4 sin +(T- 6) = constant. 

for this region. It seems unlikely that the description of the near field can be 
matched with that of the far field. One or more regions for intermediate values of 
r in which different combinations of terms come into balance may be required. 
In  the transition region, the full Navier-Stokes equations may be needed to 
describe the flow. Further progress may be possible after making an Oseen-type 
linearization of the equations with respect to the composite stream function 
@ = 26r - 271,/3, although in the outer region this is a forced rather than a forcing 
flow. 
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The flux integral condition (4.5) is obtained from the Navier-Stokes equations, 
which in turn are satisfied by the expansions. The asymptotic expansions in 
terms of large g should satisfy the flux condition to all orders, and this has been 
verified elsewhere up to terms of O(<--l). 

X X  10-4  

Frau~E 2. One-term composite-flow streamlines, 267 - 27/43 = constant, 
plotted in the z plane. 

The leading terms of the radial velocity are of O(r-f)  in the jet and of O(r-8) 
in the z plane. The lower order term overtakes the leading term when g - lnr. 
Thus, in an intermediate region, the order decreases from O(r-f)  to that of the 
outer field velocity, namely O(r-3). The dominant potential flow in the z plane 
for r 1 is shown in figure 1. The streamlines cut the radial line 8 = oonstant 
at the same angle &(n- 8); in particular, the angle of entry of all streamlines into 
the singular line 8 = 0 is @. The direction of inflow seems to contradict the fact 
that the jet motion is in the positive-x direction. However, since this backflow 
is a second-order effect it is clearly permissible. The velocity field of the leading 
term 267 - 27/43 of a composite stream function expansion is shown in figure 2. 
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Since the solution depends crucially on the exponential decay of vorticity to 
all orders, it is worth noting that (3.5) may be obtained by replacing the con- 
dition Q, = 0 by the less stringent one of constant pressure in the quiescent 
fluid. The vorticity wo derived from (3.5) certainly approaches zero exponentially 
as q -f 00. It then follows readily that Yo is indeed potential. By writing 

II. = Yo+Y = 2 ( & q / 4 3 ) + Y ,  

w = no+Q = n, 
we obtain the linearized equation 

V2C2 + 2Q6 + (2 /43)  C2? = 0. (12.1) 

Separable solutions which vanish on = E43 are found to have exponential 
decay as E2+q2 + co with 0 < < 4 3 .  This supports the assumption of ex- 
ponentially small vorticity at ‘upstream infinity ’. 

As was anticipated in the introduction, the expansions are seen to contain 
eigenfunctions. The outer and the first inner eigensolutions have been interpreted 
physically. Higher order inner eigensolutions are more difficult to interpret but 
probably correspond to the possibility of having a more general distribution of 
circulation production in the finite part of the plane. The expansions satisfy 
the symmetry and mass requirements as well as the flux integral condition. Their 
structure has been determined beyond the terms discussed above (Capell 1971) 
and they appear to be correct. 

The author thanks Professor A. F. Pillow for suggesting the problem and is 
grateful for both his and Professor K. Stewartson’s advice during its solution. 

Appendix 

compressible flow may be written as 
Provided that there are no mass sources, the momentum equation for in- 

av 
- - v x w + V  W + E  -vV% = f .  
at ( 2  P! 

The force pf per unit volume, may be viewed as the momentum source density. 
When v = (vl, v2, 0) and f = fi, the x component of (A 1) may be written as the 
conservation result for x momentum: 

avl/at + v . n: = f. (A 2) 

A flux vector for x momentum is 

For such two-dimensional flows, Helmholtz’ vorticity equation, when written 
in the form 
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expresses conservation of circulation and displays the flux vector wv - vVw for 
circulation as a sum of convective and diffusive components, w being the source 
density for circulation production. In  the interior of a viscous fluid, under 
conservative body forces, w is of course, zero. Multiplication of (A 4) by y, and 
a little algebra, yields - 

af 
at a Y  

+V.V = m = -y-, 

V = wyv - vV(wy) + $(v:- vg) i + v1w2 j. 

Then (A 5) is a conservation equation for the quantity wydS, which is JJ, 
the moment of circulation about Ox within a fixed arbitrary region S. The total 
rate of production of this quantity within S is 

provided that f = 0 on the boundary a s  of X. Under steady conditions, since 
both quantities are conserved and each is produced at a constant rate in S ,  
the discharge through as of moment of circulation is equal to the discharge of 
x momentum divided by density. It follows that, for steady flows, a source of 
x momentum of strength p M  at 0 (i.e. with f = 0 outside the origin) is equivalent 
to a circulation-producing dipole of strength M at 0, the dipole axis being in the 
positive-y direction. 
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